Amateur Radio and P-IE WA4YIH – Ed Woodrick

P=IE

P = Power (Watt)

I = Current (Amp)

- E = Electromotive Force (aka V Voltage) (Volt)
- Commonly known as P=VI
 Also equivalent to I=P/V or V=P/I

Simplest Use

How much current does my 50W radio pull?

FT-8800R Guesstimate

50 Watts Output
13.8VDC Power
50W / 13.8V = 3.7Amps minimum
Amplifiers are not 100% efficient
Don't forget the fan and light bulbs

FT-8800R Specifications

GENERAL

- > Antenna Impedance: 50 Ohms
- Supply Voltage: 13.8 VDC (±15%)
- > Current Consumption: RX: 0.5 A (Squelched)
- > TX: 8.5 A (144 MHz), 8.0 A (430 MHz)

TRANSMITTER

- Output Power: 50/20/10/5 W (144 MHz),
- > 35/20/10/5 W (430 MHz)

RECEIVER

Maximum AF Output: 2 W @ 8 Ω for 5% THD

Something Bigger 500 W Amplifier

Plugged into house

- > 120V
- > 500W
- > 500W/120V = 4.2A
- Plugged into car
 - > 12V
 - > 500W
 - 500W/12V = 42A

Batteries

Batteries have a specified voltage
Battery capacity in Amp-Hours (AH)
1 AH Battery will supply 1A for 1 Hour

VX-3R Specifications

Antenna Impedance: 50 Ohms Supply Voltage: Nominal: 3.7 V DC, Negative Ground Operating: 3.5 ~ 7 V, Negative Ground (EXT DC Jack) 5.0 ~ 7 V, Negative Ground (EXT DC Jack with Charging) Current Consumption: 120 mA (Receive) 60 mA (Standby, Saver Off) 30 mA (Standby, Saver On, Save Ratio 1:2) 50 mA (Radio Band Receive) 100 µA (Auto Power Off) 1.3 A (1.5 W Tx , 144 MHz) 3.7 V DC 1.6 A (3 W Tx , 144 MHz) 6 V DC 1.2 A (1 W Tx , 430 MHz) 3.7 V DC 1.8 A (2 W Tx , 430 MHz) 6 V DC Transmitter **RF Power Output:** 1.5 W (@ 4.5 V AA x 3 or 3.7 V FNB-82LI 144 MHz) 3 W (@ 6 V or EXT DC 144 MHz) 1 W (@4.5 V AA x 3 or 3.7 V FNB-82LI 430 MHz) 2 W (@ 6 V or EXT DC 430 MHz) Low 0.1 W (@ 4.5 V AA x 3 or 3.7 V FNB-82LI) Low 0.3 W <u>(@ 6 V or EXT DC)</u> Receiver 50 mW @ 8 W for 10 % THD (@ 3.7 V) AF Output: 100 mW @8 W for 10 % THD (@ 6 V) FNB-82LI – 1000 mAH, 3.7V

VX-3R Calculations

Receive

 1000mA/Hr / 50mA = 20Hrs

 Transmit

 1000mA/Hr / 1300mA = 0.76Hrs

How Much Do You Transmit?
How Much Do You Receive?

Go-Kit Calculations

Determine Duty Cycle
Add all current requirements
Determine adequate battery size
Determine battery charging requirements

How big of a battery.....

40 Watt Mobile Radio
40W/12V = 3.5A
80 A-H Battery = 80AH / 3.5A = 22 Hrs
7 A-H Battery = 7AH / 3.5A = 2 Hrs

How long does it take to charge....

West Mountain Super Power Gate
 1, 4, 7, and 10A multi-stage charging
 Example 80 A-H Battery
 1A charge rate – 80AH / 1A = 80 hours

- Batteries can take 130% of capacity to charge
- 80 hours x 130% = 4.4 days
- > 10A charge rate 80AH / 10A = 8 hours
 8 hours x 130% = 11 hours

Batteries must be charged at rated current

Does Wire Size Matter? Why use big wire instead of small wire? Isn't zip cord good for everything Fuses

Voltage Loss @ 10 ft

Recommended Wire Gauge

General Purpose Thermoplastic (GPT)

AWG	Diameter Inches	Approximate Ohms per 1000 feet	Allowable Ampacity 140°F	Max Fuse or Circuit Breaker Size (Amps)	Permissible Load 80% (Amps)
6	0.162"	0.4	80	80	65
8	0.129"	0.63	55	50	44
10	0.102"	1.0	40	40	32
12	0.081"	1.6	25	25	20
14	0.064"	2.5	20	20	16

AC Power is Weird!

- AC Power isn't DC
- Voltage switches from + to -
- Resistance turns into Reactance
- AC current flows on the outside of the wire!
- A hollow wire carries as much AC as a solid core does.
- High Tension Power Lines are hollow to reduce cost and weight

What to Watch Out For Places Where Power Becomes an Issue

RG-58 has small center conductor Max Power 250W at 150MHz

Ohms Law

 \bullet V=IR \rightarrow V = Voltage (Volts) > I = Current (Amps) > R = Resistance (Ohms) \bullet AWG 6 0.4 Ohms / 1000ft 80% Load = 65AVoltage Drop = $0.4 \times 65 = 26V$ Not suitable for 12V application

Extension Cables

- 100ft cord drops twice the Voltage as a 50ft cord
- To compensate, the longer the cord, the lower the gauge to carry the same current.
- P=I²R
- When current passes through a cable that has a resistance, power is converted to heat

Fuses can have relatively high internal resistance

- Fuse resistance can increase over time and abuse
- Typical 0.2V drop across fuse

Voltage Inverters

Onvert 12V DC to 120V AC Large Units becoming inexpensive • 1000W Unit Example > Full Power 1000W > Output 120V AC > Input 12V DC Output Current = 1000W / 120VAC = 8.3A

Input Current = 1000W / 12VDC = 83A

Inverter Cabling

Output

- > 8.5A
- > #14+ Gauge Wire
- Voltage drop / 100ft = 2.5 Ohms/1000ft/10ft x 8.5A = 2.125V / 100ft

Input

- > 85A
- Not on chart at least #4 Gauge
- Voltage drop / 100ft = 0.3 Ohms/1000ft/10ft x 85A = 2.125V / 1000ft = 0.03V / 100ft

Car Jumper Cables

Starter can use 500A when first energized
After initial on-rush, currents are 50-100A
Good Jumper Cables are 4 gauge and larger

10 Gauge Booster Cable

500 AMP Rated Premium Tangle Free All Rubber Construction

Advertising is misleading.....

JUMPER CABLES

JUMPER CABLES

Don't be Fooled by Thick Insulation

JUMPER CABLES

2 Gauge Jumper Cables

Cables with PowerPoles!

Anderson PowerPoles

ARES Standard

- 15, 30, and 45A connectors all use the same size shell
- Pins are different for each model
- Don't put 45A through a 15A connector!
 - > 15A for 16-18 gauge wire
 - > 30A for 14-12 gauge wire
 - > 45A for 10 gauge wire

WERPOLE CONNECTORS \cap

תותאיבר איבואלים

They look the same from the outside (except bigger) but the pins are different.

15A

20A

125V

Conclusions

Too small of wire can cause fires Cables have voltage drop, this can sometimes be significant • Use the right size cable for the job PowerPoles are not all the same! Good Jumper Cables can mean starting a car immediately