Optimizing Your PSK31 Signal

Clint Hurd - kk7uq

Presented at SEAPAC Seaside Oregon June 19, 2004

PSK31 Optimization

•The PSK Signal

- •Setting Audio Level Conservative and
- Aggressive Methods
- •Interfacing
- •Software Features & Tools
- •Operating Receiving, Transmitting, IMD RST
- •Other Modes

Typical Station Setup for Sound Card Modes

Binary Phase Shift Keying - BPSK31

- Phase modulates an audio "carrier" at 31.25 baud
- Reverses phase 180 degrees (BPSK)
- Reduces signal level at phase shift time to reduce spurious frequencies
- Uses variable length encoding most used characters are encoded into small word lengths

BPSK Signal Envelope

Varicode "Space" character = 1 where 0 is a Phase Reversal and 1 is no reversal must have at least two 0 between characters

PSK SIGNAL BASICS

- A clean signal has unwanted sidebands at -24 dB or better
- Overdriving the signal may imcrease power output, but does NOT improve copy.

Setting the Audio Drive Level

- Adjusting the audio drive level is the proper way to set power output.
- You do NOT improve the signal quality by reducing the power level setting on the transceiver - you only reduce the power of an improperly adjusted signal

Setting the Audio Drive Level

- Adjusting the audio drive level can be done at the:
 - -PC using the WAVE control slider
 - -Interface if you have a level control pot
 - -Transceiver Mic Gain

PC Output Audio Control

- The WAVE output is the one used to generate the PSK signal

- The WAVE and Volume work together
- Mute all other sources

Interface Level Control

- If your interface has a level control potentiometer, use this for fine adjustments rather than the PC panel
- If your interface has an internal level control potentiometer, use the PC WAVE slider for audio level control

Transceiver Mic Gain

- The transceiver Mic gain can also be used to control audio drive level.
- Normally this is set for proper phone audio level and left alone when using psk.

How Much Power?

- Protect your transceiver finals normally run at no more than 50% of rated CW output (peak)
- Turn off Compression
- Run with minimum ALC

Convervative Method

- Pick a waterfall frequency in the middle of your rig output filter typically 1200 Hz
- Set your rig power control to 100%
- Turn off Compression
- Transmit an IDLE signal (no typing, buffer empty)
- Adjust audio drive level to produce an output of 25% (ave) or 50% (peak) of rated CW output.
- ALC should be at low or zero level

Why Derate Power So Much?

- The PSK signal will run at 50% duty cycle when in IDLE, and up to 90% when transmitting data.
- The transceiver audio path must stay linear (no or little ALC or Compression).

Aggressive Method

- Use an IMD monitoring device such as the PSK Meter or the IMD Meter
- Turn off Compression
- Set the rig output control to 50%
- Transmit an IDLE signal
- Adjust the audio drive level to produce an IMD of -24 dB or better - typically run at -30 dB

Basic Hardware Interface

Computer		Ham Rig				
SC Mic In	< 1 V p-p	Spkr Out				
SC Spkr Out	1 V p-p Attenuator 10 mV p-p	Mic In				
Sorial Out (BTS)	+- 12V Vevel Shifter Closure to Gnd	DTT				
Senar Out (ICIS)						
Sound Card Modes - Interface Block Diagram						

Optimizing Sound Card Interface

- Provide audio drive potentiometer control on the interface
- Provide waterfall drive potentiometer control on the interface
- Provide audio monitor on the interface
- Incorporate CAT control with sound card interface to use single Serial Port

VOX for rig control?

- VOX could be used to "key" the rig instead of a serial port control line
- Difficult to do in practise:
 - Audio drive level to trigger VOX reliably may exceed level which gives a clean signal
 - Any PC audio keys the rig
- Positive PTT control is more reliable
- Exception: the Signal Link interface built in "VOX" does key reliably with out overdriving the rig audio

Software Features Help Optimize PSK Operation

- Macros
- Log
- Sound History
- Multiple modes
- Transceiver control using CAT
- Multiple receive windows

Macros

- Single click creates full typing function
- Example Macro "CQ" <TX> CQ CQ CQ CQ DE KK7UQ KK7UQ KK7UQ CQ CQ CQ CQ DE KK7UQ KK7UQ KK7UQ CQ CQ CQ CQ DE KK7UQ KK7UQ KK7UQ PSE K <RX>
- Optimized Macro "CQ" <CLEARTXWINDOW> <TX> cq cq cq cq de kk7uq kk7uq kk7uq pse -k-<RXANDCLEAR>

Macro "Start QSO"

- Basic Macro "Start QSO" <TX> <CALL> <CALL> CALL> DE <MYCALL> <MYCALL> <MYCALL> ...
- Optimized Macro "Start QSO <CLEARTXWINDOW> <TX> <CALL> <CALL> <(NAME)> de kk7uq (Clint) fb <NAME> ...

Macro "73"

- Basic Macro "73"
 73 <CALL> <CALL> DE <MYCALL> <MYCALL>
 QSO LOGGED AT <SAVEQSO> <TIME> <DATE>
 SK <RX>
- Optimized Macro "73" 73 <NAME> <CALL> de kk7uq sk <SAVEQSO> <RXANDCLEAR>

Waterfall or Spectrum Display

- Use waterfall when looking for CQ

 Can see entire band and history
 Easy to spot CQ's
- Use Spectrum when in QSO
 - Can see quality of signal
 - Can estimate RST better
 - Can determine S/N of signal

Sound History

- Feature of some sound card software
- Stores 20 seconds (or more) of sound card output
- Activated by holding down SHIFT key and clicking on signal
- Plays back last 20 seconds to receive window
- Great for searching for CQs

Built in Log

- Logs QSO data from screen
- Name / QTH of previous contact pop into fields on new contact
- Tracks actual frequency if using CAT
- Mode automatically entered
- Can export to other logs or Cabrillo

	1	VIIX			g r	/		162			
Search result	: - 1155 QSO(s) (ound								2	ŝ
UTC start	UTC end	RX kHz	TX kHz	Mode	Call	Sert	B.	Name	ОТН	Dorr +	i
02/12/02 02:54	02/12/02 02:59	14071	14071	RPS	WA70K	-		Lee	Sun Div AZ		í
02/12/02 03:54	02/12/02 03:54	14072	14072	BPS.	KH20			Rick	Honolulu		
02/12/02 03:57	02/12/02 03:58	14070	14070	BPS	WAEYSO			Dave	Redwood City CA		
02/12/02 04:40	02/12/02 13 33	14058	14058	BPS.	AA4ME			Ford	South Padre Isla		l
02/12/02 22:39	02/12/02 23:09	14072	14072	BPS	WAELVE			liny.	Sun City CA	-	í
02/12/02 23:19	02/12/02 23:21:	20121	20121	BPS	KKSBT			Bob	Roswell NM		
02/13/02 00:23	02/13/02 00:33	28120	28120	BPS.	HL4CYG			Ahn	Gwano-iu City K		
02/13/02 05:35	02/13/02 05:48	14071	14071	BPS	KB7JMW			Lovey	WA		
02/14/02 06:24	02/14/02 06:30:	14071	14071	BPS	KB7JMW			Lovey	WA		
02/14/02 06:35	02/14/02 06:51:	14073	14073	MESK	FK8GX			Michel	New Caledonia		
02/16/02 05:21	02/16/02 05:22	14071	14071	BPS	JA4HM			Kazu	Yamaguchi		
02/16/02 12:30	02/16/02 12:43	14072	14072	BPS	VE7JDB			John	Malahat BC		
02/16/02 05:10	02/16/02 12:43	14072	14072	BPS	KB9VJY			Joe	W. Monroe LA		
02/16/02 12:49	02/16/02 12:54:	3581	3581	8PS	KOAQO	569	569	Jack.	Freeman MO		
02/16/02 16:05	02/16/02 16:14:	28121	28121	8PS	SA68ND	469	469	Branko	Vie Ieland Creatia		
02/16/02 16:27	02/16/02 16:36:	28121	28121	BPS	HF0P0L			Mizek.	King George Isl		
02/17/02 05:00	02/17/02 11:56:	14072	14072	BPS	W7EVC			Harold			
02/17/02 12:04	02/17/02 12:18:	14072	14072	BPS	JA5TX			Mitsuo	Tosa		
										N I	

Transceiver Control Using CAT

- Software controls & monitors transceiver frequency and mode
- Logged frequency is accurate
- In some cases, can activate PTT via CAT

Operating Methods

- Receiving
- Transmitting
- Upper vs lower case
- RST reporting
- IMD measurement
- Working DX

Receiving

- Looking for CQ use sound history
- Use LOCK to hold frequency on new station
- Put AFC ON

Transmitting

- Calling CQ
 - Keep length short, repeat about every 8 seconds
 - Use lower case to speed it up
 - cq cq cq de kk7uq kk7uq kk7uq cq pse k
 Use Auto CQ
- Calling a station
 - Keep length short, use his call once
 - W7WJK de kk7uq kk7uq pse k

Transmitting

- Compact macros
 - Keep length short
 - Use lower case wherever possible
- UPPER vs lower Case
 - lower case is faster because of variable length encoding

RST - "R"

- R readability 5 95 100% copy
- R4 90 95% copy
- R3 75 90% copy
- R2 50 75% copy
- R1 under 50%

RST - "S" Strength

Use Spectrum Display - estimate S/N							
@ S/N of 6 dB per S unit							
S 9	54 dB	S6 36 d	IB S3	18 dB			
S 8	48 dB	S5 30 d	IB S2	12 dB			
S7	42 dB	S4 24 c	IB S1	6 dB			

"T" - Signal Quality

- T9 IMD -24 dB or better
- T8 IMD -20 dB to -24 dB
- T7 IMD -15 dB to -20 dB
- T4 IMD worse than -15dB

IMD

- What is IMD?
- Giving an IMD Report
- Things to look out for
- Take the IMD with a grain of salt
- Let your eye be your guide

What is IMD?

- IMD Intermodulation Distortion
- Measures "linearity" of audio path of the PSK signal through the transmitter and the receiver
- A software tool built into most PSK software

The strength of the primary signal compared to the 3rd harmonic above is -19 dB hence IMD is -19 dB

Giving an IMD Report

- Monitor the IMD measurement at the bottom of the screen
- Signal must be in IDLE (no typing, buffer empty)
- Check the S/N of the signal it should be above 36 dB to get an accurate report

Things to look out for

- If S/N is too low, the IMD will be reported low
- If S/N is too high, the IMD will be reported low - because the receiver is clipping the signal - adjust the RF gain

Take an IMD measurement with a grain of salt

- If you are given a low IMD (say -19 dB) :
- Have them use the spectrum display and check the S/N

Let Your Eye Be Your Guide

- If the signal you are monitoring has S/N about -20 dB and IMD is about the same number:
- If the signal looks clean i.e. straight sides, no apparent side bands, then the real IMD is probably -24 or better.

Working DX

- Split operation using LOCK on your TX signal and RX on the DX station
- Strong signals poor copy look at tuning indicator to see if wide phase distortion - probably multi path
- Use short calls

Other Modes

- QPSK vs BPSK
- BPSK63
- MFSK
- RTTY
- Hellschreiber